摘要翻译:
本文研究了Murre关于有理Chow群结构的猜想,并给出了具体的Chow-Kuenneth投影。更确切地说,我们研究的例子是具有nef切丛的变种。对于具有nef切丛的曲面和三重曲面,得到了满足Murre猜想的显式Chow-Kuenneth投影,并验证了motivic Hard Lefschetz定理。
---
英文标题:
《Murre's conjectures and explicit Chow--Kuenneth projectors for some
varieties》
---
作者:
Jaya NN Iyer
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this paper, we investigate Murre's conjectures on the structure of rational Chow groups and exhibit explicit Chow--Kuenneth projectors for some examples. More precisely, the examples we study are the varieties which have a nef tangent bundle. For surfaces and threefolds which have a nef tangent bundle explicit Chow--Kuenneth projectors are obtained which satisfy Murre's conjectures and the motivic Hard Lefschetz theorem is verified.
---
PDF链接:
https://arxiv.org/pdf/0706.1566


雷达卡



京公网安备 11010802022788号







