楼主: 可人4
539 0

[计算机科学] 时间规整下海量时间序列数据库的精确索引 距离 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-7 20:59:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在现有的许多时间序列距离测度中,动态时间规整(DTW)距离因其在序列比对中的灵活性而被公认为是最准确和最合适的距离测度之一。然而,DTW距离计算的计算量很大。特别是在超大型的时间序列数据库中,由于时间序列数据的高维性会导致I/O开销极高,因此即使使用索引结构进行随机访问,对整个数据库进行顺序扫描也是不切实际的。更具体地说,顺序结构消耗高CPU但低I/O成本,而索引结构需要低CPU但高I/O成本。因此,本文提出了一种新的索引序列结构TWIST(Time Warping In indexed sequential structure,tindexed sequential structure,Time Warping)。当查询序列发出时,TWIST计算一组候选序列与查询序列之间的较低边界距离,并预先确定数据访问顺序,从而减少了大量的顺序访问和随机访问。令人印象深刻的是,我们的索引序列结构在查询过程中实现了几个数量级的显著加速。此外,该方法在查询处理时间、页面访问次数、存储需求等方面均优于现有的同类方法,且不保证错误删除。
---
英文标题:
《Exact Indexing for Massive Time Series Databases under Time Warping
  Distance》
---
作者:
Vit Niennattrakul, Pongsakorn Ruengronghirunya, Chotirat Ann
  Ratanamahatana
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Databases        数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Information Retrieval        信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--

---
英文摘要:
  Among many existing distance measures for time series data, Dynamic Time Warping (DTW) distance has been recognized as one of the most accurate and suitable distance measures due to its flexibility in sequence alignment. However, DTW distance calculation is computationally intensive. Especially in very large time series databases, sequential scan through the entire database is definitely impractical, even with random access that exploits some index structures since high dimensionality of time series data incurs extremely high I/O cost. More specifically, a sequential structure consumes high CPU but low I/O costs, while an index structure requires low CPU but high I/O costs. In this work, we therefore propose a novel indexed sequential structure called TWIST (Time Warping in Indexed Sequential sTructure) which benefits from both sequential access and index structure. When a query sequence is issued, TWIST calculates lower bounding distances between a group of candidate sequences and the query sequence, and then identifies the data access order in advance, hence reducing a great number of both sequential and random accesses. Impressively, our indexed sequential structure achieves significant speedup in a querying process by a few orders of magnitude. In addition, our method shows superiority over existing rival methods in terms of query processing time, number of page accesses, and storage requirement with no false dismissal guaranteed.
---
PDF链接:
https://arxiv.org/pdf/0906.2459
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:时间序列数据 序列数据 时间序列 数据库 Intelligence 进行 distance data 测度 结构

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 14:17