楼主: 可人4
252 0

[统计数据] 封闭量子系统的统计弛豫与Van Hove极限 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-7 21:37:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文用两种不同的方法分析了某一类设计模型占用概率的动态变化。一方面,我们给出了两种具体相互作用的数值计算,指出统计动力学的发生依赖于相互作用的结构。此外,我们给出了一个无穷大系统的解析推导,它在Van Hove极限下得到了整个相互作用系综上的平均统计行为。
---
英文标题:
《Statistical Relaxation in Closed Quantum Systems and the Van Hove-Limit》
---
作者:
Christian Bartsch and Pedro Vidal
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We analyze the dynamics of occupation probabilities for a certain type of design models by the use of two different methods. On the one hand we present some numerical calculations for two concrete interactions which point out that the occurrence of statistical dynamics depends on the interaction structure. Furthermore we show an analytical derivation for an infinite system that yields statistical behaviour for the average over the whole ensemble of interactions in the Van Hove-limit.
---
PDF链接:
https://arxiv.org/pdf/710.2008
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:HOV 子系统 Van interactions Calculations certain probabilities 极限 Statistical 解析

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-8 05:38