摘要翻译:
本文用两种不同的方法分析了某一类设计模型占用概率的动态变化。一方面,我们给出了两种具体相互作用的数值计算,指出统计动力学的发生依赖于相互作用的结构。此外,我们给出了一个无穷大系统的解析推导,它在Van Hove极限下得到了整个相互作用系综上的平均统计行为。
---
英文标题:
《Statistical Relaxation in Closed Quantum Systems and the Van Hove-Limit》
---
作者:
Christian Bartsch and Pedro Vidal
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We analyze the dynamics of occupation probabilities for a certain type of design models by the use of two different methods. On the one hand we present some numerical calculations for two concrete interactions which point out that the occurrence of statistical dynamics depends on the interaction structure. Furthermore we show an analytical derivation for an infinite system that yields statistical behaviour for the average over the whole ensemble of interactions in the Van Hove-limit.
---
PDF链接:
https://arxiv.org/pdf/710.2008


雷达卡



京公网安备 11010802022788号







