摘要翻译:
信念传播是解决涉及大量随机变量的推理问题的一种强有力的启发式方法,最近被推广到量子理论中。与经典算法一样,当满足适当的独立性条件时,该算法在树上是精确的,当在环图上操作时,该算法有望提供可靠的逼近。本文在有限温度量子多体物理的背景下,对环形量子信念传播(QBP)的性能进行了比较。我们的结果表明,当图中的典型环尺寸较大时,QBP提供了对高温相关函数的可靠估计。因此,它适用于Bethe晶格上量子自旋玻璃的研究和稀疏量子纠错码的译码。
---
英文标题:
《Belief propagation algorithm for computing correlation functions in
finite-temperature quantum many-body systems on loopy graphs》
---
作者:
David Poulin and Ersen Bilgin
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Belief propagation -- a powerful heuristic method to solve inference problems involving a large number of random variables -- was recently generalized to quantum theory. Like its classical counterpart, this algorithm is exact on trees when the appropriate independence conditions are met and is expected to provide reliable approximations when operated on loopy graphs. In this paper, we benchmark the performances of loopy quantum belief propagation (QBP) in the context of finite-tempereture quantum many-body physics. Our results indicate that QBP provides reliable estimates of the high-temperature correlation function when the typical loop size in the graph is large. As such, it is suitable e.g. for the study of quantum spin glasses on Bethe lattices and the decoding of sparse quantum error correction codes.
---
PDF链接:
https://arxiv.org/pdf/710.4304


雷达卡



京公网安备 11010802022788号







