摘要翻译:
本文研究了描述一维L位格子气对称排斥动力学和与不同密度粒子库接触的定常非平衡测度的Gibbs-Shannon熵的行为。在流体力学标度极限L到无穷远处,Bahadoran证明了该熵的前序(O(L))行为是对应于严格局部平衡的乘积测度;我们计算第一个修正,它是O(1)。计算采用截断相关函数的形式展开熵;对于这个系统,第k个这样的关联是O(L^{-K+1})。这种熵修正仅依赖于描述密度场协方差的标度截断对相关性。在大L极限下,它与从具有相同协方差的高斯测度获得的相应校正相一致。
---
英文标题:
《Entropy of Open Lattice Systems》
---
作者:
B. Derrida, J. L. Lebowitz, and E. R. Speer
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L to infinity, the leading order (O(L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k-th such correlation is shown to be O(L^{-k+1}). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.
---
PDF链接:
https://arxiv.org/pdf/704.3742


雷达卡



京公网安备 11010802022788号







