楼主: 能者818
597 0

[电气工程与系统科学] PPG生物特征识别在不同状态下身份认证的评价 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-8 09:49:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在所有的医学生物特征中,光电体积描记(PPG)是最容易获得的。PPG记录血液容量的变化,只需结合发光二极管和光电二极管从身体的任何部分。随着物联网和智能家居的渗透,PPG录音可以轻松地与其他重要的可穿戴设备集成。PPG代表了每个人血液动力学和心血管系统的特殊性。提出了一种基于PPG的非信任生物认证方法。PPG信号作为一种生理信号,随生理/心理压力和时间的变化而变化。为了健壮性,这些变化不能忽略。本文利用连续小波变换(CWT)和直接线性判别分析(DLDA)对PPG生物特征进行了广泛的性能评估。在不同的状态和数据集上,平均训练时间为$45$-$60$s时,错误率(EER)为$0.5%$-$6%$。我们基于CWT/DLDA的降维技术优于其他降维技术和以前的工作。
---
英文标题:
《Evaluation of PPG Biometrics for Authentication in different states》
---
作者:
Umang Yadav, Sherif N Abbas, Dimitrios Hatzinakos
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Cryptography and Security        密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Amongst all medical biometric traits, Photoplethysmograph (PPG) is the easiest to acquire. PPG records the blood volume change with just combination of Light Emitting Diode and Photodiode from any part of the body. With IoT and smart homes' penetration, PPG recording can easily be integrated with other vital wearable devices. PPG represents peculiarity of hemodynamics and cardiovascular system for each individual. This paper presents non-fiducial method for PPG based biometric authentication. Being a physiological signal, PPG signal alters with physical/mental stress and time. For robustness, these variations cannot be ignored. While, most of the previous works focused only on single session, this paper demonstrates extensive performance evaluation of PPG biometrics against single session data, different emotions, physical exercise and time-lapse using Continuous Wavelet Transform (CWT) and Direct Linear Discriminant Analysis (DLDA). When evaluated on different states and datasets, equal error rate (EER) of $0.5\%$-$6\%$ was achieved for $45$-$60$s average training time. Our CWT/DLDA based technique outperformed all other dimensionality reduction techniques and previous work.
---
PDF链接:
https://arxiv.org/pdf/1712.08583
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:生物特征识别 身份认证 PPG Applications Optimization biometric 特征 session different 录音

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 06:27