摘要翻译:
我们考虑了一类量子热机,它由两个子系统通过酉变换相互作用,并耦合到两个不同温度下的独立溶液中(T_H>T_C$)。发动机的目的是提取由于温差的功。它的动力学并不局限于近平衡区。通过在各种约束条件下最大化提取的功来确定引擎结构。当这种最大化在有限功率下进行时,发动机动力学由定义良好的温度描述,并满足第二定律的局部版本。此外,它的效率从下以Curzon-Ahlborn值$1-\sqrt{t_c/t_h}$为界,从上以Carnot值$1-(t_c/t_h)$为界。对于宏观发动机,后者是在有限功率下实现的,而前者是在平衡极限$t_h\t_c$内实现的。当功在零功率下最大化时,即使是一个小的(少级)发动机也能以卡诺效率提取功。
---
英文标题:
《Work extremum principle: Structure and function of quantum heat engines》
---
作者:
Armen E. Allahverdyan, Ramandeep S. Johal, Guenter Mahler
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
We consider a class of quantum heat engines consisting of two subsystems interacting via a unitary transformation and coupled to two separate baths at different temperatures $T_h > T_c$. The purpose of the engine is to extract work due to the temperature difference. Its dynamics is not restricted to the near equilibrium regime. The engine structure is determined by maximizing the extracted work under various constraints. When this maximization is carried out at finite power, the engine dynamics is described by well-defined temperatures and satisfies the local version of the second law. In addition, its efficiency is bounded from below by the Curzon-Ahlborn value $1-\sqrt{T_c/T_h}$ and from above by the Carnot value $1-(T_c/T_h)$. The latter is reached|at finite power|for a macroscopic engine, while the former is achieved in the equilibrium limit $T_h\to T_c$. When the work is maximized at a zero power, even a small (few-level) engine extracts work right at the Carnot efficiency.
---
PDF链接:
https://arxiv.org/pdf/709.4125


雷达卡



京公网安备 11010802022788号







