摘要翻译:
基因组中影响复杂性状的区域,即数量性状位点(QTL),可以通过遗传和表型数据的统计分析来识别。当使用受限最大似然(REML)模型时,映射过程通常需要计算。利用方差分量分析和AI-REML算法,提出了一种高效的QTL定位计算方案。该算法使用递归恒等式矩阵的精确或近似低秩表示,结合矩阵求逆的Woodbury公式,使AI-REML迭代体中的计算更加高效。对于IBD矩阵的精确低秩表示是先验可用的情况,改进的AI-REML算法通常比标准版本运行速度快近两倍。当没有精确的低秩表示时,使用截断谱分解来确定低秩近似。我们证明了同样在这种情况下,AI-REML格式的计算效率通常可以显著提高。
---
英文标题:
《Efficient Implementation of the AI-REML Iteration for Variance Component
QTL Analysis》
---
作者:
Kateryna Mishchenko, Sverker Holmgren and Lars Ronnegard
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Regions in the genome that affect complex traits, quantitative trait loci (QTL), can be identified using statistical analysis of genetic and phenotypic data. When restricted maximum-likelihood (REML) models are used, the mapping procedure is normally computationally demanding. We develop a new efficient computational scheme for QTL mapping using variance component analysis and the AI-REML algorithm. The algorithm uses an exact or approximative low-rank representation of the identity-by-descent matrix, which combined with the Woodbury formula for matrix inversion results in that the computations in the AI-REML iteration body can be performed more efficiently. For cases where an exact low-rank representation of the IBD matrix is available a-priori, the improved AI-REML algorithm normally runs almost twice as fast compared to the standard version. When an exact low-rank representation is not available, a truncated spectral decomposition is used to determine a low-rank approximation. We show that also in this case, the computational efficiency of the AI-REML scheme can often be significantly improved.
---
PDF链接:
https://arxiv.org/pdf/0709.0625


雷达卡



京公网安备 11010802022788号







