摘要翻译:
系统地比较了股票市场波动的几类随机波动模型。我们表明,在我们称之为“GARCH”型的模型家族中,长时间收益分布要么是高斯分布,要么发展成幂律尾部,而短时间收益分布一般具有伸展指数形式,但也可以假设代数衰减。在指数Ornstein-Uhlenbeck过程中发现了中间区。我们还计算了波动率自相关函数的衰减。
---
英文标题:
《A contribution to the systematics of stochastic volatility models》
---
作者:
Frantisek Slanina
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We compare systematically several classes of stochastic volatility models of stock market fluctuations. We show that the long-time return distribution is either Gaussian or develops a power-law tail, while the short-time return distribution has generically a stretched-exponential form, but can assume also an algebraic decay, in the family of models which we call ``GARCH''-type. The intermediate regime is found in the exponential Ornstein-Uhlenbeck process. We calculate also the decay of the autocorrelation function of volatility.
---
PDF链接:
https://arxiv.org/pdf/1009.2696


雷达卡



京公网安备 11010802022788号







