楼主: 大多数88
365 0

[电气工程与系统科学] 一种与文本无关的说话人验证模型:比较分析 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-8 13:33:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
语音生物特征识别领域最紧迫的挑战是选择最有效的说话人识别技术。每个人的声音都是特殊的,像发声器官的身体差异、口音和发音等因素导致了问题的复杂性。在本文中,我们探索了说话人识别过程中每个模块中可用的各种方法,目的是找出能够获得精确结果的最佳技术。我们研究了文本独立语料库的结果。在说话人识别系统中,采用MFCC(Melfrequency copstral coffective copstral coffector),LPCC(线性预测copstral coffector)和PLP(感知线性预测)算法进行特征提取,采用PCA(主成分分析)和tSNE进行降维,采用SVM(支持向量机)、前馈、最近邻和决策树算法进行分类,并对每个分类块进行比较分析,确定最佳分类方法
---
英文标题:
《A text-independent speaker verification model: A comparative analysis》
---
作者:
Rishi Charan, Manisha.A, Karthik.R, Rajesh Kumar M
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  The most pressing challenge in the field of voice biometrics is selecting the most efficient technique of speaker recognition. Every individual's voice is peculiar, factors like physical differences in vocal organs, accent and pronunciation contributes to the problem's complexity. In this paper, we explore the various methods available in each block in the process of speaker recognition with the objective to identify best of techniques that could be used to get precise results. We study the results on text independent corpora. We use MFCC (Melfrequency cepstral coefficient), LPCC (linear predictive cepstral coefficient) and PLP (perceptual linear prediction) algorithms for feature extraction, PCA (Principal Component Analysis) and tSNE for dimensionality reduction and SVM (Support Vector Machine), feed forward, nearest neighbor and decision tree algorithms for classification block in speaker recognition system and comparatively analyze each block to determine the best technique
---
PDF链接:
https://arxiv.org/pdf/1712.00917
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:比较分析 Segmentation Architecture Modification Applications 发音 algorithms block MFCC 因素

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 01:40