摘要翻译:
本文首先给出了单元体和扇子的一些基本性质,然后从给定的扇子构造了任意环上的一个toric格式。利用赋值准则证明了该方案是分离的,并给出了该方案成立的充要条件。我们还研究了它的正则性和对数正则性。最后,我们研究了由扇的同态引起的toric格式的态射。
---
英文标题:
《Purely Algebraic Method to Construct Toric Schemes》
---
作者:
Ting Li
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this article, we first give some elementary proprieties of monoids and fans, then construct a toric scheme over an arbitrary ring, from a given fan. Using Valuative Criterion, we prove that this scheme is separated and give the sufficient and necessary condition when it is proper. We also study the regularity and logarithmic regularity of it. Finally we study the morphisms of toric schemes induced by the homomorphisms of fans.
---
PDF链接:
https://arxiv.org/pdf/0711.0522


雷达卡



京公网安备 11010802022788号







