摘要翻译:
我们建立了热带交汇理论的第一部分。也就是说,我们定义了循环、卡地亚因子和它们之间的交积(不传递给有理等价),并讨论了推进和后退。我们首先对R^n中的fans进行处理,然后对局部为fans的“抽象”循环进行处理。关于在枚举几何中的应用,我们最后讨论了R^n中圈和圈类的有理等价和交积。
---
英文标题:
《First Steps in Tropical Intersection Theory》
---
作者:
Lars Allermann, Johannes Rau
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We establish first parts of a tropical intersection theory. Namely, we define cycles, Cartier divisors and intersection products between these two (without passing to rational equivalence) and discuss push-forward and pull-back. We do this first for fans in R^n and then for "abstract" cycles that are fans locally. With regard to applications in enumerative geometry, we finally have a look at rational equivalence and intersection products of cycles and cycle classes in R^n.
---
PDF链接:
https://arxiv.org/pdf/0709.3705


雷达卡



京公网安备 11010802022788号







