摘要翻译:
我们解释了如何从Grothendieck的局部几何和函数环的等价性的非交换版本中重读Polchinski关于D-膜的工作,从而将D-膜(B型)定义为Azumaya型非交换空间。D-膜的几个最初的开弦诱导性质可以完全由这个内在定义再现。在此条件下,我们还研究了交换目标空间上D0-膜的模空间。它的一些特征类似于Vafa工作中D0-膜的气体。
---
英文标题:
《Azumaya-type noncommutative spaces and morphisms therefrom: Polchinski's
D-branes in string theory from Grothendieck's viewpoint》
---
作者:
Chien-Hao Liu and Shing-Tung Yau
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
---
英文摘要:
We explain how Polchinski's work on D-branes re-read from a noncommutative version of Grothendieck's equivalence of local geometries and function rings gives rise to an intrinsic prototype definition of D-branes (of B-type) as an Azumaya-type noncommutative space. Several originally open-string induced properties of D-branes can be reproduced solely by this intrinsic definition. We study also the moduli space of D0-branes on a commutative target space in this setup. Some of its features resembles gas of D0-branes in Vafa's work.
---
PDF链接:
https://arxiv.org/pdf/0709.1515


雷达卡



京公网安备 11010802022788号







