摘要翻译:
当量子系统被划分为子系统时,它们的纠缠熵服从一个被称为“强次可加性”的不等式。对于场论,这个不等式可以表述为:给定空间的任意两个区域$a$和$B$,$S(a)+S(B)\GE S(a\Cup B)+S(a\CapB)$。最近,在具有全息对偶引力理论的任何场论中,发现了一种计算纠缠熵的方法。在本文中,我们利用这个全息公式给出了强次可加性的一个简单的几何证明。
---
英文标题:
《A holographic proof of the strong subadditivity of entanglement entropy》
---
作者:
Matthew Headrick and Tadashi Takayanagi
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
When a quantum system is divided into subsystems, their entanglement entropies are subject to an inequality known as "strong subadditivity". For a field theory this inequality can be stated as follows: given any two regions of space $A$ and $B$, $S(A) + S(B) \ge S(A \cup B) + S(A \cap B)$. Recently, a method has been found for computing entanglement entropies in any field theory for which there is a holographically dual gravity theory. In this note we give a simple geometrical proof of strong subadditivity employing this holographic prescription.
---
PDF链接:
https://arxiv.org/pdf/704.3719


雷达卡



京公网安备 11010802022788号







