摘要翻译:
我们研究了基于正交频分复用(OFDM)复信道系数的深度神经网络在多输入多输出(MIMO)用户定位中的可用性。与其他室内定位系统(IPSs)相比,所提出的方法不需要任何额外的导频开销或通信系统本身的任何其他变化,因为它部署在现有的OFDM MIMO系统之上。在实际测量的支持下,我们主要对更具挑战性的非视线(NLoS)场景感兴趣。然而,梯度下降优化需要大量的数据点进行训练,即与传统方法相比,所需的数据库太大。因此,我们提出了一个两步训练过程,第一步对模拟视线数据进行训练,第二步对测量的非视距位置进行精细调整。结果表明,这减少了所需的测量训练位置,从而减少了数据采集的工作量。
---
英文标题:
《On Deep Learning-based Massive MIMO Indoor User Localization》
---
作者:
Maximilian Arnold, Sebastian D\"orner, Sebastian Cammerer, Stephan ten
Brink
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We examine the usability of deep neural networks for multiple-input multiple-output (MIMO) user positioning solely based on the orthogonal frequency division multiplex (OFDM) complex channel coefficients. In contrast to other indoor positioning systems (IPSs), the proposed method does not require any additional piloting overhead or any other changes in the communications system itself as it is deployed on top of an existing OFDM MIMO system. Supported by actual measurements, we are mainly interested in the more challenging non-line of sight (NLoS) scenario. However, gradient descent optimization is known to require a large amount of data-points for training, i.e., the required database would be too large when compared to conventional methods. Thus, we propose a twostep training procedure, with training on simulated line of sight (LoS) data in the first step, and finetuning on measured NLoS positions in the second step. This turns out to reduce the required measured training positions and thus, reduces the effort for data acquisition.
---
PDF链接:
https://arxiv.org/pdf/1804.04826


雷达卡



京公网安备 11010802022788号







