楼主: 大多数88
442 0

[电气工程与系统科学] 短时功率无小区Massive MIMO性能研究 制约因素 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
66.4732
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-3 13:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文考虑了一个时分双工无小区的大规模多输入多输出(MIMO)系统,其中多个分布式接入点同时服务于多个用户。提出并分析了一种在APs上满足短期平均功率约束的归一化共轭波束形成方案,该方案考虑了信道信息不完备的影响。我们导出了该方案的每用户可达到的下行链路速率的近似闭式表达式。本文还对归一化共轭波束形成方案与文献[1]中的常规共轭波束形成方案(满足长期平均功率约束)的性能进行了分析和数值比较。与常规共轭波束形成方案相比,归一化共轭波束形成方案降低了由于用户缺乏信道状态信息知识而带来的波束形成不确定性增益,从而提高了下行链路的可达速率。
---
英文标题:
《On the Performance of Cell-Free Massive MIMO with Short-Term Power
  Constraints》
---
作者:
Giovanni Interdonato, Hien Quoc Ngo, Erik G. Larsson, P{\aa}l Frenger
---
最新提交年份:
2016
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  In this paper we consider a time-division duplex cell-free massive multiple-input multiple-output (MIMO) system where many distributed access points (APs) simultaneously serve many users. A normalized conjugate beamforming scheme, which satisfies short-term average power constraints at the APs, is proposed and analyzed taking into account the effect of imperfect channel information. We derive an approximate closed-form expression for the per-user achievable downlink rate of this scheme. We also provide, analytically and numerically, a performance comparison between the normalized conjugate beamforming and the conventional conjugate beamforming scheme in [1] (which satisfies long-term average power constraints). Normalized conjugate beamforming scheme reduces the beamforming uncertainty gain, which comes from the users' lack of the channel state information knowledge, and hence, it improves the achievable downlink rate compared to the conventional conjugate beamforming scheme.
---
PDF链接:
https://arxiv.org/pdf/1608.05121
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:massive mass SIV mas IMO 方案 many 速率 考虑 下行

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 16:52