楼主: kedemingshi
429 0

[电气工程与系统科学] 卷积神经网络的MIMO图滤波器 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-8 18:45:20 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
优越的性能和易于实现的优点促使卷积神经网络(CNNs)被广泛应用于各种推理和重建任务。CNNs实现了三个基本模块:卷积、池化和逐点非线性。由于前两种操作仅对规则结构的数据如音频或图像有很好的定义,因此将CNNs应用于信息定义在不规则域中的当代数据集是一个挑战。本文研究了CNNs体系结构,以操作信号,其支持可以用图来建模。最近提出了一种用所谓的线性移位不变图滤波器代替规则卷积的结构。本文更进一步,在多输入多输出(MIMO)图滤波器的框架下,对所采用的图滤波器施加额外的结构,得到了三种新的(更节省的)结构。所提出的体系结构减少了模型参数的数目,降低了计算复杂度,方便了训练,并降低了过拟合的风险。仿真结果表明,所提出的较简单的体系结构与较复杂的模型具有相似的性能。
---
英文标题:
《MIMO Graph Filters for Convolutional Neural Networks》
---
作者:
Fernando Gama, Antonio G. Marques, Alejandro Ribeiro, Geert Leus
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Superior performance and ease of implementation have fostered the adoption of Convolutional Neural Networks (CNNs) for a wide array of inference and reconstruction tasks. CNNs implement three basic blocks: convolution, pooling and pointwise nonlinearity. Since the two first operations are well-defined only on regular-structured data such as audio or images, application of CNNs to contemporary datasets where the information is defined in irregular domains is challenging. This paper investigates CNNs architectures to operate on signals whose support can be modeled using a graph. Architectures that replace the regular convolution with a so-called linear shift-invariant graph filter have been recently proposed. This paper goes one step further and, under the framework of multiple-input multiple-output (MIMO) graph filters, imposes additional structure on the adopted graph filters, to obtain three new (more parsimonious) architectures. The proposed architectures result in a lower number of model parameters, reducing the computational complexity, facilitating the training, and mitigating the risk of overfitting. Simulations show that the proposed simpler architectures achieve similar performance as more complex models.
---
PDF链接:
https://arxiv.org/pdf/1803.02247
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 滤波器 MIM IMO 神经网 Neural 模型 优点 滤波器 Networks

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 19:45