摘要翻译:
我们证明了Green,Griffiths和Kerr最近定义的中间雅可比族Neron modle的Hausdorff性质,假定无穷远的除数是光滑的。利用他们的结果,在这种情况下,这意味着容许正规函数的零轨迹闭包的解析性。最后一个断言也是Brosnan和Pearlstein在曲线情况下推广他们的方法得到的。
---
英文标题:
《Hausdorff property of the Neron models of Green, Griffiths and Kerr》
---
作者:
Morihiko Saito
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove the Hausdorff property of the Neron modle of the family of intermediate Jacobians which is recently defined by Green, Griffiths and Kerr assuming that the divisor at infinity is smooth. Using their result, this implies in this case the analyticity of the closure of the zero locus of an admissible normal function. The last assertion is also obtained by Brosnan and Pearlstein generalizing their method in the curve case.
---
PDF链接:
https://arxiv.org/pdf/0803.2771


雷达卡



京公网安备 11010802022788号







