楼主: 何人来此
387 0

[统计数据] 含噪向量场的积分曲线与中的统计问题 扩散张量成像:非参数核估计与假设 测试 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-8 20:11:40 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
设$V$是有界开集$G\子集{\MathBB{R}}^D$中的向量场。假设$v$在随机点$x_i处用随机噪声观察,I=1,..,n,$是独立且均匀分布在$G$中的问题是估计微分方程[frac{dx(t)}{dt}=v(x(t)),qquad t\geq0,x(0)=x_0\in G,\]的积分曲线,并对积分曲线到达给定集$x(0)=x_0\in G的假设进行统计检验。我们发展了一个基于Nadaraya-Watson型核回归估计量的估计过程,给出了估计积分曲线的渐近正态性,并导出了极限高斯过程的均值和协方差函数的微分和积分方程。这提供了一种不仅跟踪积分曲线,而且跟踪其估计的协方差矩阵的方法。我们还研究了积分曲线到足够光滑曲面γ-子集G$的平方极小距离的渐近分布。在此基础上,我们为积分曲线达到$\γ$的假设开发了测试过程。这种性质的问题在扩散张量成像中引起了人们的兴趣,扩散张量成像是一种基于测量脑白质中离散位置的扩散张量的脑成像技术,在那里水分子的扩散通常是各向异性的。扩散张量数据被用来估计扩散的主要方向,并跟踪白质纤维从初始位置跟随这些方向。我们的方法为这个问题的分析带来了更严格的统计工具,特别是提供了在研究白质轴突连接性时可能有用的假设检验程序。
---
英文标题:
《Integral curves of noisy vector fields and statistical problems in
  diffusion tensor imaging: nonparametric kernel estimation and hypotheses
  testing》
---
作者:
Vladimir Koltchinskii, Lyudmila Sakhanenko, Songhe Cai
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  Let $v$ be a vector field in a bounded open set $G\subset {\mathbb {R}}^d$. Suppose that $v$ is observed with a random noise at random points $X_i, i=1,...,n,$ that are independent and uniformly distributed in $G.$ The problem is to estimate the integral curve of the differential equation \[\frac{dx(t)}{dt}=v(x(t)),\qquad t\geq 0,x(0)=x_0\in G,\] starting at a given point $x(0)=x_0\in G$ and to develop statistical tests for the hypothesis that the integral curve reaches a specified set $\Gamma\subset G.$ We develop an estimation procedure based on a Nadaraya--Watson type kernel regression estimator, show the asymptotic normality of the estimated integral curve and derive differential and integral equations for the mean and covariance function of the limit Gaussian process. This provides a method of tracking not only the integral curve, but also the covariance matrix of its estimate. We also study the asymptotic distribution of the squared minimal distance from the integral curve to a smooth enough surface $\Gamma\subset G$. Building upon this, we develop testing procedures for the hypothesis that the integral curve reaches $\Gamma$. The problems of this nature are of interest in diffusion tensor imaging, a brain imaging technique based on measuring the diffusion tensor at discrete locations in the cerebral white matter, where the diffusion of water molecules is typically anisotropic. The diffusion tensor data is used to estimate the dominant orientations of the diffusion and to track white matter fibers from the initial location following these orientations. Our approach brings more rigorous statistical tools to the analysis of this problem providing, in particular, hypothesis testing procedures that might be useful in the study of axonal connectivity of the white matter.
---
PDF链接:
https://arxiv.org/pdf/710.3509
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:统计问题 非参数 核估计 Differential connectivity subset 白质 跟踪 有用 假设

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 08:49