楼主: mingdashike22
551 0

[电气工程与系统科学] 色带:基于邻域统计浏览的快速修复 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-8 21:29:20 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
图像修复是指使用相邻像素填充图像中缺失的地方。它在图像处理的不同任务中也有许多应用。这些应用大多通过显著的不必要的改变甚至消除一些现有的像素来增强图像质量。这些变化需要相当大的计算复杂性,从而导致显着的处理时间。在本文中,我们提出了一种快速修复算法,称为色带,基于选择的补丁周围的每一个缺失的像素。这将加快视频图像的在线帧修复的执行速度和能力。所应用的代价函数是所有相邻像素的统计和空间特征的结合。我们使用所提出的代价函数对一些候选补丁进行评估,并将其最小化以获得最终的补丁。实验结果表明,与已有方法相比,“色带”算法具有更高的速度,而对于杂项数据集的图像,其PSNR和SSIM都是相当的。
---
英文标题:
《RIBBONS: Rapid Inpainting Based on Browsing of Neighborhood Statistics》
---
作者:
Mojtaba Akbari, Majid Mohrekesh, Nader Karimi, Shadrokh Samavi
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--

---
英文摘要:
  Image inpainting refers to filling missing places in images using neighboring pixels. It also has many applications in different tasks of image processing. Most of these applications enhance the image quality by significant unwanted changes or even elimination of some existing pixels. These changes require considerable computational complexities which in turn results in remarkable processing time. In this paper we propose a fast inpainting algorithm called RIBBONS based on selection of patches around each missing pixel. This would accelerate the execution speed and the capability of online frame inpainting in video. The applied cost-function is a combination of statistical and spatial features in all neighboring pixels. We evaluate some candidate patches using the proposed cost function and minimize it to achieve the final patch. Experimental results show the higher speed of 'Ribbons' in comparison with previous methods while being comparable in terms of PSNR and SSIM for the images in MISC dataset.
---
PDF链接:
https://arxiv.org/pdf/1712.09236
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Mathematical Construction Experimental Segmentation 速度 images pixels 显着 导致

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 22:23