摘要翻译:
设X是由光滑实有理曲面通过加权爆破得到的奇异实有理曲面。用Aut(X)表示X到自身的代数自同构群。设n为自然整数,设E=[e_1,...,E_L]为n的一个分区。用X^e表示无穷靠近X阶(e_1,...,e_l)点的不同的非奇异曲线的L-元组(P_1,...,P_l)的集合。我们证明了群Aut(X)在X^e上传递作用。这个陈述推广了以前的工作,其中在补充条件X是非奇异的情况下处理平凡划分E=[1,...,1]的情形。作为应用,我们通过加权爆破对由非奇异曲面得到的奇异实有理曲面进行分类。
---
英文标题:
《Automorphisms of real rational surfaces and weighted blow-up
singularities》
---
作者:
Johannes Huisman (LM-Brest), Fr\'ed\'eric Mangolte (LM-Savoie)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a singular real rational surface obtained from a smooth real rational surface by performing weighted blow-ups. Denote by Aut(X) the group of algebraic automorphisms of X into itself. Let n be a natural integer and let e=[e_1,...,e_l] be a partition of n. Denote by X^e the set of l-tuples (P_1,...,P_l) of distinct nonsingular curvilinear infinitely near points of X of orders (e_1,...,e_l). We show that the group Aut(X) acts transitively on X^e. This statement generalizes earlier work where the case of the trivial partition e=[1,...,1] was treated under the supplementary condition that X is nonsingular. As an application we classify singular real rational surfaces obtained from nonsingular surfaces by performing weighted blow-ups.
---
PDF链接:
https://arxiv.org/pdf/0804.3846


雷达卡



京公网安备 11010802022788号







