摘要翻译:
基于多通道线性预测的自适应去混响算法是一种有效的去混响方法,很好地平衡了长期混响的衰减和去混响后的语音质量。然而,由于说话人的移动引起的语音源位置的突变,使得自适应算法难以保证快速的收敛速度和最优的稳态行为。本文研究了基于RLS的自适应多通道线性预测方法,提出了一种基于自适应滤波器系数相对加权变化的时变遗忘因子,以有效地跟踪目标说话人位置的突变。仿真和实验证明了该方案的优越性。
---
英文标题:
《RLS-Based Adaptive Dereverberation Tracing Abrupt Position Change of
Target Speaker》
---
作者:
Teng Xiang, Jing Lu and Kai Chen
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
Adaptive algorithm based on multi-channel linear prediction is an effective dereverberation method balancing well between the attenuation of the long-term reverberation and the dereverberated speech quality. However, the abrupt change of the speech source position, usually caused by the shift of the speakers, forms an obstacle to the adaptive algorithm and makes it difficult to guarantee both the fast convergence speed and the optimal steady-state behavior. In this paper, the RLS-based adaptive multi-channel linear prediction method is investigated and a time-varying forgetting factor based on the relative weighted change of the adaptive filter coefficients is proposed to effectively tracing the abrupt change of the target speaker position. The advantages of the proposed scheme are demonstrated in the simulations and experiments.
---
PDF链接:
https://arxiv.org/pdf/1802.08997


雷达卡



京公网安备 11010802022788号







