摘要翻译:
在具有任意对称误差分布的分层线性模型中,我们刻划了从参数和缺失数据的联合后验分布中采样的Gibbs采样器的收敛性。我们证明了收敛性可以是一致的、几何的或亚几何的,这取决于误差分布的相对尾部行为以及参数的选择。我们的理论用于刻画Gibbs采样器在潜在高斯过程模型上的收敛性。我们指出了我们所介绍的理论框架在分析更复杂的模型时是如何有用的。
---
英文标题:
《Stability of the Gibbs Sampler for Bayesian Hierarchical Models》
---
作者:
Omiros Papaspiliopoulos and Gareth Roberts
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
We characterise the convergence of the Gibbs sampler which samples from the joint posterior distribution of parameters and missing data in hierarchical linear models with arbitrary symmetric error distributions. We show that the convergence can be uniform, geometric or sub-geometric depending on the relative tail behaviour of the error distributions, and on the parametrisation chosen. Our theory is applied to characterise the convergence of the Gibbs sampler on latent Gaussian process models. We indicate how the theoretical framework we introduce will be useful in analyzing more complex models.
---
PDF链接:
https://arxiv.org/pdf/710.4234


雷达卡



京公网安备 11010802022788号







