摘要翻译:
与图形相关联的费曼振幅是某一动机的周期。在Grothendieck变体环中定义了所有无多重边或无蝌蚪且有n个顶点的连通图上这些运动类的和。这个和显示在仿射线生成的子环中。从Belkale和Brosnan的工作中可以看出,单个图的动机并不存在于这个子带中。
---
英文标题:
《Motives associated to sums of graphs》
---
作者:
Spencer Bloch
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The Feynman amplitude associated to a graph is a period of a certain motive. The sum of these motive classes over all connected graphs with no multiple edges or tadpoles and n vertices is defined in the Grothendieck ring of varieties. This sum is shown to lie in the subring generated by the affine line. It follows from work of Belkale and Brosnan that motives of individual graphs do not lie in this subring.
---
PDF链接:
https://arxiv.org/pdf/0810.1313


雷达卡



京公网安备 11010802022788号







