摘要翻译:
对于系数依赖于参数的多项式方程组,用系数的牛顿多面体计算其判别的牛顿多面体。在非混合情况下,得到了一个显式公式(包括混合纤维多面体和多曲面体的欧拉阻塞),提出了一些一般性的开放问题,并推广了许多类似的已知结果。本文以混合纤维体的支撑函数公式为基础,提出了混合纤维体存在性的新证明。
---
英文标题:
《Newton polyhedra of discriminants of projections》
---
作者:
Alexander Esterov
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
For a system of polynomial equations, whose coefficients depend on parameters, the Newton polyhedron of its discriminant is computed in terms of the Newton polyhedra of the coefficients. This leads to an explicit formula (involving mixed fiber polyhedra and Euler obstructions of toric varieties) in the unmixed case, suggests certain open questions in general, and generalizes a number of similar known results. The argument is based on a formula for the support function of a mixed fiber body, which also suggests a new proof for existence of mixed fiber bodies.
---
PDF链接:
https://arxiv.org/pdf/0810.4996


雷达卡



京公网安备 11010802022788号







