楼主: 大多数88
253 0

[计算机科学] 一种新的心脏疾病预测和分类方法 智能代理 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.0197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-11 17:24:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
目标是开发一种新的方法,用于心脏病预测和诊断使用智能代理。最初,症状是用基于过滤器和包装器的代理进行预处理的。过滤器去除缺失的或不相关的症状。包装器用于根据阈值限制提取数据集中的数据。每个症状的依赖性使用依赖性检查代理来识别。分类是基于症状的先验概率和后验概率与证据值。最后将症状分为无症状、开始症状、轻度症状、中度症状和重度症状五类。利用合作方法解决了心脏问题,并对其进行了验证。
---
英文标题:
《A Novel Approach for Cardiac Disease Prediction and Classification Using
  Intelligent Agents》
---
作者:
Murugesan Kuttikrishnan
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The goal is to develop a novel approach for cardiac disease prediction and diagnosis using intelligent agents. Initially the symptoms are preprocessed using filter and wrapper based agents. The filter removes the missing or irrelevant symptoms. Wrapper is used to extract the data in the data set according to the threshold limits. Dependency of each symptom is identified using dependency checker agent. The classification is based on the prior and posterior probability of the symptoms with the evidence value. Finally the symptoms are classified in to five classes namely absence, starting, mild, moderate and serious. Using the cooperative approach the cardiac problem is solved and verified.
---
PDF链接:
https://arxiv.org/pdf/1009.5346
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:心脏疾病 Intelligence Presentation Applications interactions 包装 data 进行 代理 预测

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 19:10