摘要翻译:
本文介绍了升降图形模型的研究概况。我们回顾了提升图形模型的一般形式,即par-factor图,并展示了许多现有的统计关系表示如何映射到这种形式。我们讨论了有效计算概率查询答案的推理算法,包括提升推理算法。我们还回顾了从数据中学习提升图形模型的工作。我们相信,对统计关系模型的需求(无论其名称如何)在未来几十年将会增长,因为我们充斥着结构化和非结构化的混合数据,以嘈杂的方式从文本中提取实体和关系,以及对这些数据进行有效推理的需求。我们希望从许多不同研究小组的想法的综合将为这个不断扩大的领域的新研究者提供一个可接近的起点。
---
英文标题:
《Lifted Graphical Models: A Survey》
---
作者:
Lilyana Mihalkova and Lise Getoor
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
This article presents a survey of work on lifted graphical models. We review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries. We also review work in learning lifted graphical models from data. It is our belief that the need for statistical relational models (whether it goes by that name or another) will grow in the coming decades, as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field.
---
PDF链接:
https://arxiv.org/pdf/1107.4966


雷达卡



京公网安备 11010802022788号







