摘要翻译:
这一答复表明,Jorg和Krzakala的评论(cond mat 0709.0894)中提出的论点不能用来削弱我们关于3D Edwards Anderson模型中超反常证据的论文(PRL 99,057206,2007;COND-MAT/0607376)中提出的结果。事实上,我们的工作主要是基于确定支配大体积法的超米性的标度律,而在(cond mat 0709.0894)中没有做过渐近分析。我们在这里证明了我们在本文中使用的同样的方法,当适当地应用于二维情况时,在正温度下揭示了预期的RSB图像的缺乏,尽管对于固定的有限体积,在联合重叠概率分布中仍然可以看到一些超参数特征。当系统体积增大或远离(T,d)平面上的临界曲线时,这些特征就消失了。
---
英文标题:
《Answer to Comment on "Ultrametricity in the Edwards-Anderson Model"
arXiv:0709.0894》
---
作者:
Pierluigi Contucci, Cristian Giardin\`a, Claudio Giberti, Giorgio
Parisi, Cecilia Vernia
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
This reply shows that the argument presented in the comment by Jorg and Krzakala (cond mat 0709.0894) cannot be used to weaken the results presented in our paper on ultrametricity evidence in the 3d Edwards Anderson model (PRL 99, 057206, 2007; cond-mat/0607376). Our work in fact was mainly based on identifying the scaling law that governs the large volume approach to ultrametricity while NO asymptotic analysis has been done in (cond mat 0709.0894). We show here that the same method we used in our paper, when properly applied to the 2d case, reveals the expected lack of RSB picture at positive temperature, despite the fact that for a fixed finite volume some ultrametric features might still be seen in the joint overlap probability distribution. Those features disappear for increasing volume or when the system is away from the critical curve in the (T,d) plane.
---
PDF链接:
https://arxiv.org/pdf/712.1431


雷达卡



京公网安备 11010802022788号







