摘要翻译:
通过比较Edwards-Anderson自旋玻璃模型在周期和反周期边界条件下的基态,我们直接研究了畴壁的长度。对于双峰和高斯键分布,我们分离了DW,并直接计算了它的分形维数D_f$。我们的结果表明,即使在三维中,两种键的分布的D_F$是相同的,但在二维(2D)体系中显然不是这样。此外,与键为高斯分布的2D Edwards-Anderson自旋玻璃的情况相反,我们没有发现键为双峰分布的DW可以描述为Schramm-Loewner演化过程。
---
英文标题:
《Fractal dimension of domain walls in the Edwards-Anderson spin glass
model》
---
作者:
S. Risau-Gusman, F. Roma
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
We study directly the length of the domain walls (DW) obtained by comparing the ground states of the Edwards-Anderson spin glass model subject to periodic and antiperiodic boundary conditions. For the bimodal and Gaussian bond distributions, we have isolated the DW and have calculated directly its fractal dimension $d_f$. Our results show that, even though in three dimensions $d_f$ is the same for both distributions of bonds, this is clearly not the case for two-dimensional (2D) systems. In addition, contrary to what happens in the case of the 2D Edwards-Anderson spin glass with Gaussian distribution of bonds, we find no evidence that the DW for the bimodal distribution of bonds can be described as a Schramm-Loewner evolution processes.
---
PDF链接:
https://arxiv.org/pdf/711.0205


雷达卡



京公网安备 11010802022788号







