摘要翻译:
研究了离散观测平稳连续时间过程的非参数密度估计问题。对于三个给定的随机或确定时间采样过程,我们建立了直方图和频率多边形可以达到与独立同分布情形相同的最优$l2}$-率。此外,由于采用了合适的“高频”采样设计,根据采样路径的规律性,这些速率与最小化的观察时间一起导出。
---
英文标题:
《Piecewise linear density estimation for sampled data》
---
作者:
Fran\c{c}ois-Xavier Lejeune (LSTA)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Nonparametric density estimation is considered for a discretely observed stationary continuous-time process. For each of three given time sampling procedures either random or deterministic, we establish that histograms and frequency polygons can reach the same optimal $L_{2}$-rates as in the independent and identically distributed case. Moreover, thanks to a suitable "high frequency" sampling design, these rates are derived together with a minimized time of observation depending on the regularity of sample paths.
---
PDF链接:
https://arxiv.org/pdf/709.4543


雷达卡



京公网安备 11010802022788号







