摘要翻译:
我们解决了在不适定反问题框架中观测到的未知信号的恢复问题。更确切地说,我们研究了数值分析或图像去模糊中常用的一个过程:最小化由$l^1$惩罚平衡的经验损失函数,作为稀疏约束。我们证明,通过选择适当的损失函数,这种估计技术能够建立一个自适应估计器,在不知道真解的正则性的情况下,它以最优收敛速度收敛
---
英文标题:
《$\ell^1$ penalty for ill-posed inverse problems》
---
作者:
J.M. Loubes
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We tackle the problem of recovering an unknown signal observed in an ill-posed inverse problem framework. More precisely, we study a procedure commonly used in numerical analysis or image deblurring: minimizing an empirical loss function balanced by an $l^1$ penalty, acting as a sparsity constraint. We prove that, by choosing a proper loss function, this estimation technique enables to build an adaptive estimator, in the sense that it converges at the optimal rate of convergence without prior knowledge of the regularity of the true solution
---
PDF链接:
https://arxiv.org/pdf/709.2606


雷达卡



京公网安备 11010802022788号







