摘要翻译:
本文给出了对合曲面的一些数值限制条件。用这些公式研究了具有对合的曲面$S$,且$P_g=q=1$,使得$S/I$是非直纹曲面,并且$S$的双锥映射不是由$I构成的。给出了一个完整的可能性列表,并构造了几个新的例子,作为曲面的二重覆盖。特别地,给出了具有双元双锥映射的$P_g=q=1$和$K^2=7$的一般型极小曲面的第一个例子。
---
英文标题:
《Involutions on surfaces with $p_g=q=1$》
---
作者:
Carlos Rito
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper some numerical restrictions for surfaces with an involution are obtained. These formulas are used to study surfaces of general type $S$ with $p_g=q=1$ having an involution $i$ such that $S/i$ is a non-ruled surface and such that the bicanonical map of $S$ is not composed with $i.$ A complete list of possibilities is given and several new examples are constructed, as bidouble covers of surfaces. In particular the first example of a minimal surface of general type with $p_g=q=1$ and $K^2=7$ having birational bicanonical map is obtained.
---
PDF链接:
https://arxiv.org/pdf/0805.4513


雷达卡



京公网安备 11010802022788号







