楼主: kedemingshi
343 0

[计算机科学] 递归概率推理的动态规划算法 程序 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-18 18:40:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们描述了一个计算离散概率规划边际分布的动态规划算法。该算法对任意概率编程语言采用函数解释器,并将其转化为有效的边际化器。因为在递归的情况下不可能直接缓存子分布,所以我们建立了子分布之间的依赖关系图。这种因数和积网络使子问题之间的依赖关系(潜在的循环)显式化,并对应于边际分布的方程组。我们用拓扑顺序的不动点迭代来求解这些方程。我们通过在概率模型教学、计算认知科学研究和博弈论中使用的例子来说明该算法。
---
英文标题:
《A Dynamic Programming Algorithm for Inference in Recursive Probabilistic
  Programs》
---
作者:
Andreas Stuhlm\"uller, Noah D. Goodman
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Data Structures and Algorithms        数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--

---
英文摘要:
  We describe a dynamic programming algorithm for computing the marginal distribution of discrete probabilistic programs. This algorithm takes a functional interpreter for an arbitrary probabilistic programming language and turns it into an efficient marginalizer. Because direct caching of sub-distributions is impossible in the presence of recursion, we build a graph of dependencies between sub-distributions. This factored sum-product network makes (potentially cyclic) dependencies between subproblems explicit, and corresponds to a system of equations for the marginal distribution. We solve these equations by fixed-point iteration in topological order. We illustrate this algorithm on examples used in teaching probabilistic models, computational cognitive science research, and game theory.
---
PDF链接:
https://arxiv.org/pdf/1206.3555
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:动态规划 distribution Presentation Intelligence Programming algorithm dependencies 拓扑 递归 规划

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 05:23