摘要翻译:
我们将Springer表示推广到全局函数域上群的上下文中。Grothendieck同时分辨率的全球对应物是抛物线Hitchin纤维。我们构造了仿射Weyl群对抛物线Hitchin纤维的直像复形的作用。特别地,我们得到了抛物型Hitchin纤维上同调上的仿射Weyl群的表示,为建立全局Springer理论提供了第一步。
---
英文标题:
《Towards a Global Springer Theory I: The affine Weyl group action》
---
作者:
Zhiwei Yun
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We propose a generalization of Springer representations to the context of groups over a global function field. The global counterpart of the Grothendieck simultaneous resolution is the parabolic Hitchin fibration. We construct an action of the affine Weyl group on the direct image complex of the parabolic Hitchin fibration. In particular, we get representations of the affine Weyl group on the cohomology of parabolic Hitchin fibers, providing the first step towards a global Springer theory.
---
PDF链接:
https://arxiv.org/pdf/0810.2146


雷达卡



京公网安备 11010802022788号







