摘要翻译:
在本文中,我们简要地回顾了一个toric簇$\mathcal{V}$的构造,它来自一个具有小齿轮或裤子分解的genus$G\geq2$Riemann曲面$\sigma^G$。这是J.Hurtubise和L.C.Jeffrey在\cite{JH1}中概述的。在引用{T1}a.中,Tyurin在一定的小齿轮分解曲面集合上使用了这种构造,为每一个gen$G产生了一个变体$DM_g$--所谓的模空间的Delzant模型。我们用关于变体$Mathcal{V}的矩多面体的一些基本事实来结束这篇注记。特别地,我们证明了Tyurin构造的变体$DM_g$,并声称是光滑的,实际上对于$G\geq3是奇异的。
---
英文标题:
《A Note on Toric Varieties Associated to Moduli Spaces》
---
作者:
James J. Uren
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this note we give a brief review of the construction of a toric variety $\mathcal{V}$ coming from a genus $g \geq 2$ Riemann surface $\Sigma^g$ equipped with a trinion, or pair of pants, decomposition. This was outlined by J. Hurtubise and L. C. Jeffrey in \cite{JH1}. In \cite{T1} A. Tyurin used this construction on a certain collection of trinion decomposed surfaces to produce a variety $DM_g$ -- the so-called Delzant model of moduli space -- for each genus $g.$ We conclude this note with some basic facts about the moment polytopes of the varieties $\mathcal{V}.$ In particular, we show that the varieties $DM_g$ constructed by Tyurin, and claimed to be smooth, are in fact singular for $g \geq 3.$
---
PDF链接:
https://arxiv.org/pdf/0811.4728


雷达卡



京公网安备 11010802022788号







