摘要翻译:
部分可观察马尔可夫决策过程(POMDPs)的规划仍然是人工智能界的一个具有挑战性的课题,尽管近似计算技术最近取得了令人瞩目的进展。以前的研究表明,在线规划方法在处理大规模POMDP域时是有希望的,因为它们“按需”决策,而不是针对整个状态空间进行主动决策。针对大型POMDPS提出了一种因数混合启发式在线规划(FHHOP)算法。FHHOP通过将一种新的混合启发式搜索策略与最近开发的因数状态表示相结合来获得其强大的功能。在几个基准测试问题上,FHHOP在可伸缩性和质量方面都大大超过了最先进的在线启发式搜索方法。
---
英文标题:
《FHHOP: A Factored Hybrid Heuristic Online Planning Algorithm for Large
POMDPs》
---
作者:
Zhongzhang Zhang, Xiaoping Chen
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Planning in partially observable Markov decision processes (POMDPs) remains a challenging topic in the artificial intelligence community, in spite of recent impressive progress in approximation techniques. Previous research has indicated that online planning approaches are promising in handling large-scale POMDP domains efficiently as they make decisions "on demand" instead of proactively for the entire state space. We present a Factored Hybrid Heuristic Online Planning (FHHOP) algorithm for large POMDPs. FHHOP gets its power by combining a novel hybrid heuristic search strategy with a recently developed factored state representation. On several benchmark problems, FHHOP substantially outperformed state-of-the-art online heuristic search approaches in terms of both scalability and quality.
---
PDF链接:
https://arxiv.org/pdf/1210.4912