摘要翻译:
本文提出了一种确定动平衡平面四杆机构全套的新方法。利用复变量对机构进行运动学建模,将动平衡约束写成复变量和关节角速度上的代数方程。消去联合角速度变量后,将该问题转化为Laurent多项式的因式分解问题。利用曲面多项式除法,导出了平面四杆机构动平衡的充要条件。
---
英文标题:
《Dynamic balancing of planar mechanisms using toric geometry》
---
作者:
Brian Moore, Josef Schicho, Clement M. Gosselin
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
In this paper, a new method to determine the complete set of dynamically balanced planar four-bar mechanims is presented. Using complex variables to model the kinematics of the mechanism, the dynamic balancing constraints are written as algebraic equations over complex variables and joint angular velocities. After elimination of the joint angular velocity variables, the problem is formulated as a problem of factorization of Laurent polynomials. Using toric polynomial division, necessary and sufficient conditions for dynamic balancing of planar four-bar mechanisms are derived.
---
PDF链接:
https://arxiv.org/pdf/0711.3742


雷达卡



京公网安备 11010802022788号







