楼主: mingdashike22
459 0

[计算机科学] 结合朴素贝叶斯和决策树的自适应入侵检测 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
74.0016
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-25 09:35:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
提出了一种新的基于朴素贝叶斯分类器和决策树的自适应网络入侵检测学习算法,该算法对不同类型的网络攻击进行平衡检测,使误报保持在可接受的水平,并从训练数据中消除导致检测模型复杂的冗余属性和矛盾实例。该算法还解决了数据挖掘中的一些难点,如连续属性处理、缺失属性值处理、训练数据降噪等。由于安全审计数据的海量性以及入侵行为的复杂性和动态性,在过去的几十年里,基于数据挖掘的入侵检测技术已经被应用于基于网络的流量数据和基于主机的数据。然而,目前的入侵检测系统(IDS)还存在着许多需要研究的问题。在KDD99基准入侵检测数据集上,我们用已有的学习算法对本文提出的算法进行了性能测试。实验结果表明,该算法在有限的计算资源下,对不同类型的网络入侵均取得了较高的检测率(DR)和显著降低误报(FP)。
---
英文标题:
《Combining Naive Bayes and Decision Tree for Adaptive Intrusion Detection》
---
作者:
Dewan Md. Farid(1), Nouria Harbi(1), and Mohammad Zahidur Rahman(2),
  ((1)University Lumiere Lyon 2 - France, (2)Jahangirnagar University,
  Bangladesh)
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  In this paper, a new learning algorithm for adaptive network intrusion detection using naive Bayesian classifier and decision tree is presented, which performs balance detections and keeps false positives at acceptable level for different types of network attacks, and eliminates redundant attributes as well as contradictory examples from training data that make the detection model complex. The proposed algorithm also addresses some difficulties of data mining such as handling continuous attribute, dealing with missing attribute values, and reducing noise in training data. Due to the large volumes of security audit data as well as the complex and dynamic properties of intrusion behaviours, several data miningbased intrusion detection techniques have been applied to network-based traffic data and host-based data in the last decades. However, there remain various issues needed to be examined towards current intrusion detection systems (IDS). We tested the performance of our proposed algorithm with existing learning algorithms by employing on the KDD99 benchmark intrusion detection dataset. The experimental results prove that the proposed algorithm achieved high detection rates (DR) and significant reduce false positives (FP) for different types of network intrusions using limited computational resources.
---
PDF链接:
https://arxiv.org/pdf/1005.4496
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:朴素贝叶斯 入侵检测 贝叶斯 决策树 Presentation 学习 入侵 训练 进行 研究

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-1 19:43