摘要翻译:
能量分解从总需求信号中确定单个电器的能量消耗,总需求信号使用单个监控设备记录。有不同的方法来解决这个问题,适用于不同的设置。在这里,我们重点关注中小企业,并从中小企业的角度探索能源分解的有用应用。更准确地说,我们使用集合体和单个设备信号的递归量化分析(RQA)来创建一个二维地图,这是一个缩小的信息空间中的轮廓区域,对应于“正常”的能量需求。然后,该地图被用来监视和控制示例业务中未来的能源消耗,从而改进他们的能效实践。特别是,我们提出的方法被证明是检测什么时候一个设备可能有故障,如果一个意外的,额外的设备正在使用。
---
英文标题:
《Energy Disaggregation for SMEs using Recurrence Quantification Analysis》
---
作者:
Laura Hattam and Danica Vukadinovic Greetham
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Energy disaggregation determines the energy consumption of individual appliances from the total demand signal, which is recorded using a single monitoring device. There are varied approaches to this problem, which are applied to different settings. Here, we focus on small and medium enterprises (SMEs) and explore useful applications for energy disaggregation from the perspective of SMEs. More precisely, we use recurrence quantification analysis (RQA) of the aggregate and the individual device signals to create a two-dimensional map, which is an outlined region in a reduced information space that corresponds to 'normal' energy demand. Then, this map is used to monitor and control future energy consumption within the example business so to improve their energy efficiency practices. In particular, our proposed method is shown to detect when an appliance may be faulty and if an unexpected, additional device is in use.
---
PDF链接:
https://arxiv.org/pdf/1803.00468


雷达卡



京公网安备 11010802022788号







