摘要翻译:
本文在因果贝叶斯网络的框架下讨论了动态序列计划的识别问题,并证明了该问题可归结为因果效应的识别,对此已有完整的算法。
---
英文标题:
《Identifying Dynamic Sequential Plans》
---
作者:
Jin Tian
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We address the problem of identifying dynamic sequential plans in the framework of causal Bayesian networks, and show that the problem is reduced to identifying causal effects, for which there are complete identi cation algorithms available in the literature.
---
PDF链接:
https://arxiv.org/pdf/1206.3292


雷达卡



京公网安备 11010802022788号







