摘要翻译:
端元提取是高光谱图像分析和分类的关键步骤。将一个混合光谱分解为一组光谱及其对应比例的集合是一种有用的方法。在本文中,我们将线性端杆提取问题作为一个进化优化任务来求解,使端杆空间中的单纯形体积最大化。我们提出了一种标准遗传算法和一种变异的体外受精模块(IVFm)来寻找最优解,并将其结果与目前最先进的顶点分量分析(VCA)方法以及传统的像素纯度指数(PPI)和N-FINDR算法进行了比较。在真实和合成高光谱数据上的实验结果表明,所提出的方法在性能和精度上都优于上述算法。
---
英文标题:
《Comparison of VCA and GAEE algorithms for Endmember Extraction》
---
作者:
Douglas Winston. R. S., Gustavo T. Laureano, Celso G. Camilo Jr
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
Endmember Extraction is a critical step in hyperspectral image analysis and classification. It is an useful method to decompose a mixed spectrum into a collection of spectra and their corresponding proportions. In this paper, we solve a linear endmember extraction problem as an evolutionary optimization task, maximizing the Simplex Volume in the endmember space. We propose a standard genetic algorithm and a variation with In Vitro Fertilization module (IVFm) to find the best solutions and compare the results with the state-of-art Vertex Component Analysis (VCA) method and the traditional algorithms Pixel Purity Index (PPI) and N-FINDR. The experimental results on real and synthetic hyperspectral data confirms the overcome in performance and accuracy of the proposed approaches over the mentioned algorithms.
---
PDF链接:
https://arxiv.org/pdf/1805.10644


雷达卡



京公网安备 11010802022788号







