楼主: 大多数88
454 0

[数学] 关于几乎极小次的变种Ⅰ:有理正规的割线轨迹 卷轴 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.7797
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-27 10:05:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
为了完成几乎极小度的类,即度精确超过余维数2的非退化不可约射影类的分类理论和结构理论,一个自然的方法是研究极小度的类的简单射影。设$\tilde X\子集{\mathbb P}^{r+1}_k$为各种最小度且余维度至少为2,并考虑$x_p=\pi_p(\tilde X)\子集{\mathbb P}^r_k$中的$P\在{\mathbb P}^{r+1}_k\反斜杠\tilde X$。通过引用{B-Sche}证明了$x_p$的上同调和局部性质由$\tildex$关于$p$的割线轨迹$\sigma_p(\tildex)$控制。沿着这一思路,本文给出了$tilde x$的割线分层的几何描述,即${mathbb P}^{r+1}_k$通过割线轨迹类型的分解。我们证明了割线轨迹$\sigma_p(\tildex)$有六种可能,并精确地描述了$\tildex$割线分层的每一层,每一层都是拟射影变体。作为一个应用,我们通过提供一个完整的对$(\tilde X,p)$,其中$\tilde X\子集{\mathbb p}^{r+1}_k$是一个极小度的变种,$p$是$\mathbb p}^{r+1}_k\setminus\tilde X$中的一个闭点,$x_p\子集{\mathbb p}^r_k$是一个Del Pezzo变种,得到了所有非正规Del Pezzo变种的分类。
---
英文标题:
《On varieties of almost minimal degree I: Secant loci of rational normal
  scrolls》
---
作者:
M. Brodmann and E. Park
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--

---
英文摘要:
  To complete the classification theory and the structure theory of varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely 2, a natural approach is to investigate simple projections of varieties of minimal degree. Let $\tilde X \subset {\mathbb P}^{r+1}_K$ be a variety of minimal degree and of codimension at least 2, and consider $X_p = \pi_p (\tilde X) \subset {\mathbb P}^r_K$ where $p \in {\mathbb P}^{r+1}_K \backslash \tilde X$. By \cite{B-Sche}, it turns out that the cohomological and local properties of $X_p$ are governed by the secant locus $\Sigma_p (\tilde X)$ of $\tilde X$ with respect to $p$.   Along these lines, the present paper is devoted to give a geometric description of the secant stratification of $\tilde X$, that is of the decomposition of ${\mathbb P}^{r+1}_K$ via the types of secant loci. We show that there are exactly six possibilities for the secant locus $\Sigma_p (\tilde X)$, and we precisely describe each stratum of the secant stratification of $\tilde X$, each of which turns out to be a quasi-projective variety.   As an application, we obtain the classification of all non-normal Del Pezzo varieties by providing a complete list of pairs $(\tilde X, p)$ where $\tilde X \subset {\mathbb P}^{r+1}_K$ is a variety of minimal degree, $p$ is a closed point in $\mathbb P^{r+1}_K \setminus \tilde X$ and $X_p \subset {\mathbb P}^r _K$ is a Del Pezzo variety.
---
PDF链接:
https://arxiv.org/pdf/0808.0090
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:mathematics Connections Computation Application composition 思路 mathbb minimal 性质 变体

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 11:10