摘要翻译:
在共形场论中,我们计算了Kac表第一列边界算子的边界算子乘积展开系数。对于C=0,我们给出了所有这些系数的闭式表达式。然后我们推广到增广极小模型,给出了当\phi_{1,2}介导固定边界条件向自由边界条件转变时有效系数的显式表达式。这些量是通过计算第一列算子的任意四点相关函数来确定的。我们的计算首先用标准的零向量方法确定合适的(非对数)共形块。然后,这些块在交叉对称下的行为提供了所需系数的一般封闭形式表达式,作为伽马函数之比的乘积。这一计算的灵感来自于临界二维渗流和增广的q=2和q=3状态临界Potts模型中某些相关函数公式中需要的几个这些系数。
---
英文标题:
《First Column Boundary Operator Product Expansion Coefficients》
---
作者:
Jacob J. H. Simmons and Peter Kleban
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We calculate boundary operator product expansion coefficients for boundary operators in the first column of the Kac table in conformal field theories. For c=0 we give closed form expressions for all such coefficients. Then we generalize to the augmented minimal models, giving explicit expressions for coefficients valid when \phi_{1,2} mediates a change from fixed to free boundary conditions. These quantities are determined by computing an arbitrary four-point correlation function of first column operators. Our calculation first determines the appropriate (non-logarithmic) conformal blocks by using standard null-vector methods. The behavior of these blocks under crossing symmetry then provides a general closed form expression for the desired coefficients, as a product of ratios of gamma functions. This calculation was inspired by the need for several of these coefficients in certain correlation function formulas for critical two-dimensional percolation and the augmented q=2 and q=3 state critical Potts models.
---
PDF链接:
https://arxiv.org/pdf/712.3575


雷达卡



京公网安备 11010802022788号







