摘要翻译:
我们考虑了当agent的不确定性由一组概率分布$\p$表示,并且agent观察到随机变量$x$具有值$x$时,它应该如何更新它的不确定性,假定agent使用极大极小准则(可能是文献中研究得最好和最常用的准则)进行决策。我们采用了一个博弈论框架,代理与庄家博弈,庄家从$\P$中选择一些分发。我们考虑了两个合理的游戏,不同的是,当他做出选择时,庄家知道什么。以前观察到的异常现象,如时间不一致,可以被理解为重要的出现,因为与拥有不同信息的博彩公司进行了不同的游戏。我们刻画了根据极大极小准则得到的最优决策规则不是条件化就是忽略信息的重要特例。最后,我们考虑了当不确定度用概率集描述时,条件和校准之间的关系。
---
英文标题:
《A Game-Theoretic Analysis of Updating Sets of Probabilities》
---
作者:
Peter D. Grunwald and Joseph Y. Halpern
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We consider how an agent should update her uncertainty when it is represented by a set $\P$ of probability distributions and the agent observes that a random variable $X$ takes on value $x$, given that the agent makes decisions using the minimax criterion, perhaps the best-studied and most commonly-used criterion in the literature. We adopt a game-theoretic framework, where the agent plays against a bookie, who chooses some distribution from $\P$. We consider two reasonable games that differ in what the bookie knows when he makes his choice. Anomalies that have been observed before, like time inconsistency, can be understood as arising important because different games are being played, against bookies with different information. We characterize the important special cases in which the optimal decision rules according to the minimax criterion amount to either conditioning or simply ignoring the information. Finally, we consider the relationship between conditioning and calibration when uncertainty is described by sets of probabilities.
---
PDF链接:
https://arxiv.org/pdf/0711.3235


雷达卡



京公网安备 11010802022788号







