摘要翻译:
根据经典广义朗之万方程和量子广义朗之万方程,研究了反抛物势垒的过流概率。结果表明,在经典情况下,通过概率的渐近值由特征函数的一个主根决定,并用一个简单的表达式给出。通过概率的表达式很一般,耗散机制和记忆效应的细节只通过特征方程的主根进入表达式。
---
英文标题:
《Non-Markovian diffusion over a parabolic potential barrier: influence of
the friction-memory function》
---
作者:
B. Yilmaz, S. Ayik, Y. Abe, and D. Boilley
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
---
英文摘要:
The over-passing probability across an inverted parabolic potential barrier is investigated according to the classical and quantal generalized Langevin equations. It is shown that, in the classical case, the asymptotic value of the over-passing probability is determined by a single dominant root of the "characteristic function", and it is given by a simple expression. The expression for the over-passing probability is quite general, and details of dissipation mechanism and memory effects enter into the expression only through the dominant root of the characteristic equation.
---
PDF链接:
https://arxiv.org/pdf/801.3366


雷达卡



京公网安备 11010802022788号







