摘要翻译:
本文首先建立了近历元相依序列正反向和的强大数定律和强不变性原理。利用这些极限定理,在无变点假设下,我们建立了一般时间序列模型变点Wald检验的一般渐近理论。作为一个应用,我们验证了我们对长记忆分数阶ARIMA模型的假设。
---
英文标题:
《Testing for change points in time series models and limiting theorems
for NED sequences》
---
作者:
Shiqing Ling
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper first establishes a strong law of large numbers and a strong invariance principle for forward and backward sums of near-epoch dependent sequences. Using these limiting theorems, we develop a general asymptotic theory on the Wald test for change points in a general class of time series models under the no change-point hypothesis. As an application, we verify our assumptions for the long-memory fractional ARIMA model.
---
PDF链接:
https://arxiv.org/pdf/708.2369


雷达卡



京公网安备 11010802022788号







