摘要翻译:
随机布尔网络是可以发生在细胞和生物圈中的无序因果系统的模型。这些是开放的热力学系统,表现出以有限速率耗散的能量流。生命通过工作来获得更多的能量,然后利用获得的可用能量来完成更多的工作。自然选择优化了许多生物系统的能量效率,这是合理的:单位燃料产生的有用能量。在这封信中,我们利用Landauer的擦除原理来研究随机布尔网络的这些问题,该原理定义了比特擦除的最小熵代价。我们证明了临界布尔网络使可用功率效率最大化,这要求系统有一个有限的偏离平衡的位移。我们的初步结果可能会扩展到更现实的细胞和生态系统模型。
---
英文标题:
《Maximum Power Efficiency and Criticality in Random Boolean Networks》
---
作者:
Hilary A. Carteret, Kelly John Rose and Stuart A. Kauffman
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Random Boolean networks are models of disordered causal systems that can occur in cells and the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained to perform more work. It is plausible that natural selection has optimized many biological systems for power efficiency: useful power generated per unit fuel. In this letter we begin to investigate these questions for random Boolean networks using Landauer's erasure principle, which defines a minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available power efficiency, which requires that the system have a finite displacement from equilibrium. Our initial results may extend to more realistic models for cells and ecosystems.
---
PDF链接:
https://arxiv.org/pdf/0804.3605


雷达卡



京公网安备 11010802022788号







