摘要翻译:
Shi和Tsai(JRSSB,2002)提出了一个有趣的残差信息准则(RIC)用于回归模型的选择。他们的RIC的动机是最小化真实模型和候选模型的残差似然之间的Kullback-Leibler差异的原则。然而,我们表明,在这个原则下,RIC总是选择完全(饱和)模型。因此,残差似然不适合作为定义信息准则的差异度量。我们解释了为什么会这样,并提供了一个修正的剩余信息准则作为补救。
---
英文标题:
《The Residual Information Criterion, Corrected》
---
作者:
Chenlei Leng
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
Shi and Tsai (JRSSB, 2002) proposed an interesting residual information criterion (RIC) for model selection in regression. Their RIC was motivated by the principle of minimizing the Kullback-Leibler discrepancy between the residual likelihoods of the true and candidate model. We show, however, under this principle, RIC would always choose the full (saturated) model. The residual likelihood therefore, is not appropriate as a discrepancy measure in defining information criterion. We explain why it is so and provide a corrected residual information criterion as a remedy.
---
PDF链接:
https://arxiv.org/pdf/711.1918


雷达卡



京公网安备 11010802022788号







