楼主: 何人来此
319 0

[计算机科学] NILS:一种基于中立的迭代局部搜索及其应用 Flowshop调度 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.7412
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-31 18:45:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文提出了一种新的方法,利用适合度景观的具体特征。特别是,我们对中立性的性质很感兴趣,它处理了这样一个事实,即相同的适应值被分配给搜索空间中的许多解。许多组合优化问题都具有这种性质,这通常对局部搜索算法非常不利。提出了一种基于中立的迭代局部搜索方法,该方法允许中立步道在平台上移动,并在置换flowshop调度问题上进行了实验,其目的是最小化最短时间。实验结果表明,与经典的迭代局部搜索相比,该方法能够找到更好的解。此外,还深入分析了中立性的利用和搜索空间新部分的探索之间的权衡。
---
英文标题:
《NILS: a Neutrality-based Iterated Local Search and its application to
  Flowshop Scheduling》
---
作者:
Marie-Eleonore Marmion (LIFL), Clarisse Dhaenens (LIFL, INRIA Lille -
  Nord Europe), Laetitia Jourdan (LIFL, INRIA Lille - Nord Europe), Arnaud
  Liefooghe (LIFL, INRIA Lille - Nord Europe), S\'ebastien Verel (INRIA Lille -
  Nord Europe)
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  This paper presents a new methodology that exploits specific characteristics from the fitness landscape. In particular, we are interested in the property of neutrality, that deals with the fact that the same fitness value is assigned to numerous solutions from the search space. Many combinatorial optimization problems share this property, that is generally very inhibiting for local search algorithms. A neutrality-based iterated local search, that allows neutral walks to move on the plateaus, is proposed and experimented on a permutation flowshop scheduling problem with the aim of minimizing the makespan. Our experiments show that the proposed approach is able to find improving solutions compared with a classical iterated local search. Moreover, the tradeoff between the exploitation of neutrality and the exploration of new parts of the search space is deeply analyzed.
---
PDF链接:
https://arxiv.org/pdf/1207.4450
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:flows shop flow LOW ILS search space neutrality local based

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 10:10