楼主: 大多数88
261 0

[数学] 对数对的本征伪体积形式 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-4-2 08:00:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们研究了对Kobayashi-Eisenman伪体积形式的对数情形的适应,或者更确切地说,是对Claire Voisin定义的它的变体的适应,她用全纯k-对应来代替全纯映射。对于由复流形X和正交Weil因子组成的对(X,D),我们定义了一个本征对数伪体积形式\phi_{X,D}。然后我们证明了当X是射影的且K_x+D是充足的时\phi_{X,D}是泛型非退化的。这个结果类似于经典的Kobayashi-Ochiai定理。我们还证明了一类对数k平凡对\phi_{X,D}的消失,这是在对数情形下向关于无穷小测度双曲性的Kobayashi猜想方向迈出的重要一步。
---
英文标题:
《Intrinsic pseudo-volume forms for logarithmic pairs》
---
作者:
Thomas Dedieu
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--

---
英文摘要:
  We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic K-correspondences. We define an intrinsic logarithmic pseudo-volume form \Phi_{X,D} for every pair (X,D) consisting of a complex manifold X and a normal crossing Weil divisor, the positive part of which is reduced. We then prove that \Phi_{X,D} is generically non-degenerate when X is projective and K_X+D is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of \Phi_{X,D} for a large class of log-K-trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.
---
PDF链接:
https://arxiv.org/pdf/0804.4811
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:logarithmic mathematics Automorphic Mathematic Adaptation 迈出 adaptation Kobayashi 正交 猜想

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 08:48